Home     GE Turbine Control     GE Mark VI     IS200IVFBG1A

ProductS

IS200IVFBG1A

BD,PWM-3 CURRETN FEEDBACK
Product DESCRIPTION
Part Number
IS200IVFBG1A
Manufacturer
General Electric
Country of Manufacture
As Per GE Manufacturing Policy
Series
Mark VI/VIe
Function
Module
Availability
In Stock
services we provide
Purchase Icon
Testing & Repair
Repair and Testing of circuit boards to diagnose ensure functionality to maintain current inventory and retain obsolete circuit boards/modules.
Exchange Icon
Training
Controls including HMI Training for Engineers, Technicians and Operators with wide variety of practical equipment including Management and Health & Safety.
Repair Icon
Purchase
You upgrade equipment and we purchase your surplus inventory to maximize the value of unused or end of life assets.
TECHNICAL SPECIFICATIONS FOR GE - IS200IVFBG1A

IS200IVFBG1A is a Current Feedback Board developed by GE. It is a part of EX2100 excitation system. The Current Feedback Board, developed by GE, plays a critical role within the excitation system, specifically in applications involving a 3-level pulse-width modulated (PWM) inverter. Positioned within the load cabinet of the series, this board is integral to ensuring precise current feedback control, thereby enhancing the overall efficiency and performance of the system.

INSTALLATION AND INTEGRATION

  • Phase Leg Assembly: The Phase Leg Assembly forms the fundamental structure responsible for managing electrical phases within the 3-level pulse-width modulated (PWM) inverter system. Comprising semiconductor devices arranged strategically, it controls the switching operations that regulate current flow and voltage output. The Current Feedback Board plays a critical role in this assembly by continuously monitoring and precisely adjusting current levels, ensuring efficient power conversion and optimal performance of the inverter system.
  • Back Base: Providing robust structural support and secure mounting points, the Back Base ensures the stability and proper alignment of various components within the load cabinet. It anchors the Current Feedback Board and other critical modules in place, safeguarding against vibrations and mechanical stresses that could affect operational reliability. This structural integrity is essential for maintaining consistent performance and facilitating ease of maintenance when necessary.
  • Interface Module: The Interface Module acts as a pivotal intermediary within the excitation system, facilitating seamless communication and control interfaces between different system elements. It enables data exchange and synchronization between the Current Feedback Board, Phase Leg Assembly, and other subsystems. This coordination ensures cohesive operation and efficient management of system functions, enhancing overall reliability and responsiveness to operational demands.
  • Capacitor Assembly Module: Central to energy storage and voltage stabilization, the Capacitor Assembly Module stores electrical energy and smoothens voltage levels within the inverter system. It absorbs transient currents and maintains stable voltage outputs, contributing to the system's reliability under varying load conditions. The Current Feedback Board collaborates closely with this module to regulate current feedback accurately, supporting consistent power delivery and minimizing fluctuations that could impact system performance.
  • Blower Assembly: Critical for thermal management, the Blower Assembly provides essential cooling to maintain optimal operating temperatures for components housed within the load cabinet. By regulating heat dissipation, it prevents overheating and ensures the longevity and reliability of sensitive electronic parts, including the Current Feedback Board. Effective cooling is essential for sustaining performance accuracy and operational efficiency under demanding industrial environments.
  • Cable Assemblies: Interconnecting various subsystems and components, Cable Assemblies establish essential electrical pathways for power distribution and signal transmission within the load cabinet. They facilitate seamless integration and communication between the Current Feedback Board, Phase Leg Assembly, Interface Module, and other critical system elements. This interconnectedness ensures coordinated operation and efficient energy management throughout the excitation system.
  • AC Buswork: As the primary conduit for distributing AC power, the AC Buswork ensures efficient and reliable power supply to all components within the excitation system. It distributes electrical energy from the source to different modules, including the Current Feedback Board, ensuring consistent and stable operation. The board’s integration with the AC Buswork is crucial for maintaining system integrity and optimizing performance, supporting continuous power generation processes without interruptions.
  • SYSTEM SOFTWARE FEATURES

  • The exciter system is designed with a high degree of flexibility and modularity, enabling it to be configured in various ways to suit different operational needs. This flexibility allows for a range of output currents and provides options for implementing different levels of redundancy within the system. Depending on the specific requirements of the application, operators can choose from configurations that include power from potential transformers connected to generator terminals, compound sources, or auxiliary sources via excitation transformers linked to auxiliary buses. These choices ensure that the exciter system can adapt seamlessly to different power distribution setups and operational scenarios.
  • Redundancy is a key feature of the exciter system, offering options such as single or multiple bridges, warm backup bridges, and simplex or redundant controls. These redundancy options are critical for enhancing system reliability and minimizing downtime. Single bridges provide basic functionality, while multiple bridges allow for increased capacity and reliability by distributing load across multiple units. Warm backup bridges ensure rapid failover in case of primary bridge failure, maintaining continuity of operation without significant interruption. Similarly, simplex or redundant controls provide flexibility in how control signals are managed, ensuring that even in the event of control system failure, backup mechanisms can seamlessly take over to maintain operation.
  • Feedback mechanisms within the exciter system are essential for monitoring and controlling performance. Key inputs include feedback from generator line current and stator output voltage, which are used to regulate and adjust the excitation levels. By monitoring these parameters closely, the exciter system can optimize its outputs of DC voltage and current to the exciter field. This controlled output is crucial for adjusting the magnetic field strength within the generator, thereby influencing voltage regulation and overall power quality.
  • featured products