Home     GE Turbine Control     GE Mark VI     IS200TBTCH1C

ProductS

IS200TBTCH1C

THEROCOUPLE TERMINAL
Product DESCRIPTION
Part Number
IS200TBTCH1C
Manufacturer
General Electric
Country of Manufacture
As Per GE Manufacturing Policy
Series
Mark VIe
Function
Module
Availability
In Stock
services we provide
Purchase Icon
Testing & Repair
Repair and Testing of circuit boards to diagnose ensure functionality to maintain current inventory and retain obsolete circuit boards/modules.
Exchange Icon
Training
Controls including HMI Training for Engineers, Technicians and Operators with wide variety of practical equipment including Management and Health & Safety.
Repair Icon
Purchase
You upgrade equipment and we purchase your surplus inventory to maximize the value of unused or end of life assets.
TECHNICAL SPECIFICATIONS FOR GE - IS200TBTCH1C

IS200TBTCH1C is a thermocouple terminal board developed by General Electric. It is a part of the Mark VIe control system. The thermocouple terminal board accommodates up to 24 thermocouple inputs of types E, J, K, S, or T. These inputs are connected to two barrier-type blocks on the terminal board, and communication with the I/O processor is established through DC-type connectors. In the Mark VIe system, the PTCC I/O pack collaborates with the board, supporting simplex, dual, and TMR (Triple Modular Redundant) systems. In simplex configurations, two PTCC packs can be plugged into the TBTCH1C, providing a total of 24 inputs. When using the TBTCH1B, one, two, or three PTCC packs can be connected, supporting a range of system setups, although only 12 inputs are accessible in this configuration.

Installation

  • Mounting the Removable Terminal Blocks: The first step in the installation process involves mounting the removable terminal blocks on the terminal board. These blocks are instrumental in connecting the thermocouples to the system. They are secured in place using two screws to ensure stability and a reliable connection.
  • Connecting Thermocouples: Thermocouples, which are temperature sensors, are then wired directly to the terminals on these blocks. The terminal blocks have 24 terminals, each capable of accepting wires up to 12 AWG in size. These terminals are where the wires from the thermocouples are securely attached.
  • Shield Terminal Strip for Grounding: On the left side of each terminal block, there is a shield terminal strip that is attached to chassis ground. This strip plays a crucial role in grounding and shielding the thermocouple wires, preventing interference and ensuring accurate temperature measurements.
  • Cabling: Mark VIe systems utilize I/O packs that plug into the J-type connectors on the thermocouple terminal board. The number of cables or I/O packs needed depends on the level of redundancy required for the system. Redundancy ensures system reliability by providing backup components.

Operation

  • Flexibility with Thermocouple Inputs: It offers remarkable flexibility as it can accommodate 24 thermocouple inputs, whether they are grounded or ungrounded. This adaptability allows it to work effectively with a variety of temperature-sensing setups.
  • Long-Distance Connectivity: One notable feature is its ability to handle thermocouple inputs located up to 300 meters (approximately 984 feet) away from the turbine control panel. This long-distance capability enables the placement of temperature sensors in various parts of the system while maintaining reliable communication with the control panel.
  • Cable Resistance Tolerance: To ensure accurate and dependable data transmission, it is designed to tolerate a maximum two-way cable resistance of 450 ohms. This tolerance ensures that cable length and resistance variations do not compromise the quality of the temperature data collected.
  • High-Frequency Noise Suppression: Noise in electrical signals can interfere with temperature measurements. TBTC addresses this concern by incorporating high-frequency noise suppression mechanisms. These mechanisms help filter out unwanted electrical noise, ensuring that the temperature readings remain precise and free from interference.
  • Cold Junction Reference Devices: Equipped with two cold junction reference devices These devices are essential for compensating for temperature variations at the junction where the thermocouple wires connect to the terminal blocks. By providing reference points, they enable accurate temperature measurements, even in varying environmental conditions.
  • Analog-to-Digital Conversion in the I/O Processor: The analog-to-digital conversion process, which translates analog temperature signals into digital data, occurs in the I/O processor. This step is vital in preparing the temperature readings for further processing and analysis.
  • Linearization for Different Thermocouple Types: Different thermocouple types exhibit unique temperature-voltage relationships. To ensure accurate temperature readings, the TBTC handles the linearization of these relationships for individual thermocouple types. This means that the temperature data is adjusted to reflect the specific characteristics of the thermocouples in use.

Product Attributes

  • Reference Junction Temperature Measurement: Cold junction compensation is achieved by measuring the reference junction temperature at specific locations on each H1C terminal board. This reference junction, also known as the cold junction, is a crucial reference point for thermocouples. Accurate measurement of its temperature is essential for compensating temperature readings.
  • TMR H1B Board's Multiple Cold Junction References: In the case of the TMR H1B board, there are six cold junction references available. These references serve as additional reference points for compensation. However, it's important to note that only three of these references are available when associated with packs. These references are invaluable for enhancing the accuracy of temperature measurements.
  • Cold Junction Temperature Accuracy: Achieving precise temperature measurements is a primary objective of cold junction compensation. The system's cold junction temperature accuracy is specified at 2 degrees Fahrenheit. This level of accuracy ensures that temperature readings are highly reliable and free from significant errors.
  • Fault Detection Through High/Low Limit Checks: To further enhance the reliability of temperature measurements, hardware-based high and low limit checks are employed for fault detection. These checks are designed to identify any temperature readings that fall outside acceptable boundaries, indicating potential errors or faults in the system.
  • Comprehensive Monitoring of Key Parameters: The monitoring process within the system is extensive and includes readings from all temperature sensors (TCs), cold junctions (CJs), calibration voltages, and calibration zero readings. This comprehensive monitoring approach ensures that all critical parameters are constantly assessed and that any deviations from expected values are promptly detected.
featured products